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AS is well known [1], in many cases  twist flows a re  accompanied by the development of secondary  
flows (return flows for  the case of twist jets or  central  zones in cyclone equipment). For  a homogenous flow 
twist in accordance  with the r ig id-body law at the entrance the possibil i ty of development of an axial r eve r s e  
flow in the initial segment  of the tubes was shown analytically in [2]. Some interest ing resul ts  f rom the nu- 
mer ica l  computation of the flow in end- to-end tubes, one of which rotates  and the other of which is at rest ,  
a re  given in [3]. It is found that if the f i r s t  (along the path of the flow) tube is at res t ,  a stagnant zone forms 
in the region near  the wall, while if the second tube is at Test, this zone lies near  the axis. Here and in the 
following by stagnant zones we mean regions of closed circulat ion flow into which the s t r eam does not pene-  
t ra te .  

The development  of secondary  flows in the presence  of twist is explained b y  the breal-Jown of the 
equil ibrium between the p re s su re  and centrifugal  fo rces .  For  example, during the rotation of a disk in 
a fluid at res t  [1] the fluid par t ic les  at the surface of the disk experience an inc rease  in the azimuthal 
veloci ty due to v iscous  fr ict ion,  and since the p r e s s u r e  penetrating f rom the volume _of the fluid does not 
compensate  for  the centr ifugal  force,  the par t ic les  are  ejected in the radial  direction.  Different mech-  
anisms are  known for the format ion of centra l  cavit ies in twist flows [4]. 

In the present  work we discuss ce r ta in  charac te r i s t i c s  of flow fluid in a swirl ing chamber  (Fig. 1). 
It is shown that if the fluid is viscous,  incompress ible ,  and nondropping, then the format ion of the stagnant 
zones in the axial regions of the swirl ing chamber  occurs  due to diffusion f rom the axis of symmet ry .  
The swirl ing chamber  can be divided into cells  (in Fig. 1 the vor tex  cell is delineated by dashed lines) 
and the flow ent i re ly  investigated in the unit vor tex  ceil, since the pat tern is symmet r i ca l  with respect  
to the plane z = * l (n + 1/2). 
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Fig. 1 
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The investigations were  ca r r i ed  out on the basis  of a numerical  solution of the complete  Nav ie r -S tokes  
equations in the new unknowns 4, r and F f o r  the ax i symmet r ic  case .  The equation for the azimuthal  com-  
ponent of the curl  of the velocity 4 is the t r ans f e r  equation for  the azimuthal  component of the vort ici ty ob- 
tained by applying the opera to r  curlcp to the momen tum- t r ans f e r  equation. The equation for the c i rcula t ion 
F is obtained direct ly  f rom the equation fo r the  azimuthal  component of the velocity by a s imple t ransi t ion 
f rom the unknown v~p to rvcp. The s t r eam function r is introduced in such a way that the equation of continuity 
is automatical ly  sat isf ied.  The equation for  r is obtained f rom the definition of 4, when the radial and axial 
components of the velocity wri t ten in t e r m s  of r a re  substituted into it. In the nondimensional form the initial 
sys tem of  equations has the following fo rm:  

t 0r t 0 r  
v r = - - - -  vz r = r v r  (1) 

r Oz ' r Or ' 

O ' ~ - ~ - V r ' ~ ' r ' ~ - V z - ~ z  - v r  r k 2 r 3 0z - - R - e ~ , O r  ' - j r  r Or r~ __ Oz2 l ,  (2) 

or  v o r  o r  i {o~r i o r .  o~r~ 

0~r t 0r 0~r r~- (4) 
Or~ r Or + ~ = 

The sca les  of the quantities a r e  defined as follows: r I is the radius of the cr i t ica l  point A; Vrl is the 
velocity in the sect ion r = r  1 in the p resence  of a uniform radial  flow; and F 0 is the c i rcula t ion at the entrance.  
The flow in the chamber  is determined by the following p a r a m e t e r s :  

L -~ l / r l ,  Re = v r , r l /~  , k = v~,rl /Fo,  

where Re is the Reynolds number  and k is the twist pa r ame te r .  

The s y m m e t r y  of the flow pat te rn  with respec t  to the surfaces  z = L /2  and z = - L / 2 ,  which a re  not solid 
sur faces ,  permi t s  formulat ion of the boundary conditions of zero  tangential s t r e s s e s  and impenetrabil i ty:  
o r / o z  = o ,  ~ = o,  ~p = o.  

Analogous boundary conditions have to be sat isf ied at the intermediate  projection: OF/Oz = O, ~ = O, r = - - c .  

The formulat ion of such ar t i f ic ia l  boundary conditions is justified due to the following: F i rs t ,  the flow in the 
axial region is of p r i m a r y  interest  in the problem; second, it is assumed that for a given flow pat te rn  the 
effects of viscous interact ion of the flow with the solid wall and of flow separat ion will be localized and 
concentrated near  the intermediate  projection, having little influence on the flow pattern in the axial region; 
third, the neglect  of viscous interact ion of the flow with the solid wall, i .e.,  the replacement  of no-s l ip  
boundary conditions by the conditions of zero  tangential s t r e s se s ,  appreciably  simplifies the numer ica l  
computation of the flow in the chamber .  For  the same reasons  we require  that 4 = 0 at the cr i t ica l  point. The 
conditions of s y m m e t r y  and quasir igid  rotat ion a re  specified at the axis:  F =0, 4 =0, r =0. The conditions of 
uniformity of the flow veloc i ty  profile a re  set up at the entrance to the vor tex cell: r  
4 = 0, r = 1. It is assumed that in the exit section, sufficiently remote  f rom the centra l  region of the chamber ,  
v r and r prof i les  a re  equalized and v z --* 0; the c i rcula t ion at the exit is taken to be the same as at the cham-  
be r  e n t r a n c e :  * = + c ( 2 z  - -  L ) ( L ,  ~ = O, F = t .  

We not get  back to the initial sys tem of equations. It is evident f rom Eq. (2) that if the circulat ion 
changes in the axial direction,  then sources  of an azimuthal  vor t ic i ty  component appear  in the volume 
of the fluid, i .e. ,  we g e t  the t e r m  F / r  3- 9 r /0z .  In this case  the equil ibrium between the p r e s s u r e  and cen-  
trifugal fo rces  is a lso disturbed.  The change in the field 4 in tu rn  leads to a change in the field r or  c o r r e -  
spondingly in v r and v z.  The effect of twisting is cha rac te r i zed  by the number  k. The quantity 1/k 2 is the 
rat io of the cha rac te r i s t i c  scales  of the inert ial  and centrifugal  fo rces .  In the case  of an ideal fluid the axial 
gradient  of the c i rcula t ion appears  in the p resence  of radial  displacements ,  if the c i rcula t ion  profi le  is in- 
homogeneous in the entrance sect ion [5]. In the case of viscous fluid large  values of 9r /~z may appear  due 
to the interact ion of the flow with the solid wall. In the present  problem the boundary conditions formulated 
above exclude both these cases ,  in ce r ta in  cases  the diffusion of the axial component of the vort ic i ty  f rom 
the axis of s y m m e t r y  may play a role in the development of ~}r/gz. 

A simple example will show the possibi l i ty of diffusion of the z component of the vort ici ty f rom the 
axis of s y m m e t r y .  Let  the prof i les  of the radial  and axial velocity components in a cyl indr ical  channel have 
the form v r = - r, v z = 2z. ff the flow is twisted and r = 1 at the surface  (r = 1), then the solution of Eq. (3) sa t -  
isfying the condition of quasi r ig id  ro ta t ion  at the axis will be 
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and the axial component of the vort ici ty ~z  = l a F / r S r  has the fo rm 

o ,  = 

This solution shows that under the act ion of viscous s t r e s s e s  an element of the fi_uid approaching the 
axis will lose its torque,  impart ing it to the outer layer .  The effect of the viscous mechanism of rad ia l to rque  
t r a n s f e r  (or diffusion of the vort ici ty f rom the axis of symmetry)  is decisive inthe Rankeffect ,  i.e.,  the vor tex  
effect of t empera tu re  separa t ion of a gas [6]. Here at~ energy t r ans f e r  f rom the inner l ayers  of the fluid to 

t he  outer  l ayers  occurs  s imultaneously with the v i scous  mechanism of torque t rans fe r ,  since the inner layers  
untwist the outer .  

In a vortex cell (Fig. 1) convective t r ans fe r  a l so  occurs  along with the viscous mechanism of torque 
transfer .-  The s imultaneous act ion of viscous and convective torque t r ans f e r  resul ts  in a breakdown of the 
homogeneoity of the c i rcula t ion profi le  along z. This can be i l lustrated for  the case  of small  twists k>> 1. 
In the z e r o - o r d e r  approximation ~ = 0 and in the centra l  region (0 -< r < 1, - L / 2  -< z -< L/2) we have 

oo 

~P = c~rI1  "Z- cos -Z-' (5) 
r t ~ !  

where I 1 is a modified Bessel  function. In the axial region onlythe f i rs t  t e r m  of se r ies  (5) need be retained and, 
based on the behavior  of the function 11 for  r--* 0, theflow can be expressed in the form 

~C 1 . ~ z  - - .  V T = T r S m T ,  v~=2c lcos~z (6) L 

In the boundary- layer  approximation,  when viscous exchange in the axial direct ion is disregarded,  the 
solution of Eq. (3) for  the given velocity profi le  (6) has the form 

F = t - - e x p [  Re'rZ "]fli -----Z~ ] 
- -  2 2 (n -- arccos y) ' (7) 

where y = sin (~z/L); Re '  =Rec l~ /L .  

The dis t r ibut ion of the c i rcula t ion in the axial region as given by (7) is shown in Fig. 2. The solid lines 
denote the constant value of c i rcula t ion for  Re '  =1000; the dashed lines denote the same for  Re'  = 10,000 (curves 
1-7 cor respond  to the values F=0.99,  0.9, 0.7, 0.5, 0.3, 0.1, 0, respectively).  The nature of the c i rculat ion 
distr ibution in the axial region remains  prac t ica l ly  unchanged if the viscous torque t r ans f e r  in the axial d i rec -  
t ion is t aken  into considerat ion.  In this case  the cons tant -c i rcula t ion  curves  will not go to infinity 
( r ~ )  for  z ~ L / 2  and will c lose  at the sur face  z = L / 2 .  
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If we now tu rn  to the t r a n s f e r  equation for  4, then it is obvious that  a negative gradient  of the c i rcu la t ion  
in the axial  d i rec t ion  will lead to the development  of vor t ic i ty  ~ < 0. Due to the viscous  and convect ive  t r a n s -  
f e r  the induced vor t i c i ty  ~ extends ove r  the region of the flow and accumula tes  at the boundary.  The negative 
values  of the az imutha l  vo r t t c i t y  component  c o r r e s p o n d  to the c lockwise  twist ing of the flow in the r,  z 
p lane  (see Fig. 1) and to a backing-of f  of the flow to the  p e r i p h e r y .  T h e r e f o r e ,  the fo rma t ion  of a stagnant 
zone nea r  the axis  m a y  be expected fo r  suff icient ly l a rge  values of Re and 1/k 2. 

The numer i ca l  computat ions  of the twist  flow in a vo r t ex  cel l  c a r r i e d  out he re  show stagnant  zones 
nea r  the axis  and the va l id i ty  of t he i r  f o rma t ion  m e c h a n i s m  descr ibed  above.  The dis t r ibut ions  of the s t r e a m  
function obtained f r o m  the n u m e r i c a l  solut ion a r e  shown in Fig. 3. The dashed l ines denote the l ines of con-  
stant  values  of the s t r e a m  function fo r  Re = 25; the continuous curves  denote the s a m e  for  Re = 100 (curves 
0-10 c o r r e s p o n d  to the values  of r f rom 0 to - 0 . 5  at 0.05 intervals}.  The computat ions  were  c a r r i e d  out for  
the following values  of the p a r a m e t e r s =  k =  1, L = 1, r J r  I =2, ry / r l  =4 (1" 2 and r 3 a r e  the radi i  of the su r f aces  
on which the condit ions,  se t  up at  the en t rance  and exit f rom the chamber ,  a r e  applied}. 

As s een  f r o m  Fig. 3, the zone thus fo rmed  expands with the inc rease  in Re. The intensi ty of the in- 
duced c i rcu la t ion  in it a l so  i n c r e a s e s  with the  growth of the stagnant zone. It is obvious that  f r o m  a ce r t a i n  
instant  the ac t ion  of the m e c h a n i s m  desc r ibed  above fo r  the fo rma t ion  of the f i r s t  zone leads  to the a p p e a r -  
ance  of a second s tagnant  zone.  The d i ag ram fo r  the d is t r ibut ion of r for  Re = 100 i l l u s t r a t e s  this  case .  With 
fu r the r  i n c r e a s e  of Re the second zone will expand and a third zone may  fo rm.  At very  l a rge  Re the flow 
p r o b a b l y b e c o m e s  turbulent  in the cen t ra l  region and these  zones a r e  reduced  to a single zone. 

In o r d e r  to de t e rmine  the  s t a t ionary  flow in the vor tex  cel l  the s y s t e m  of equations (1)- (4) with the c o r -  
responding boundary  conditions was solved numer ica l ly  by the re la t ion  method,  for  which the t e r m  r a r  
~r is added to Eq. (4). An impl ic i t  d i f fe rence  scheme  

f~+i/2 /7 _[_ Li (Ar]~, A ~,~+1/2 As+, A2+n§ = 0, 

].n+t ]n+i/~ 
' - -  + q- L, (Ar)'~ +i, Az/? +1/2, --r'A2~'~+l,* , A21~ +t/2) -- 0. 

was cons t ruc ted  by the  method of f rac t ional  s teps  s i m i l a r  to [7]; he re  fi denotes  r ,  4, and r respec t ive ly ;  
Arf i i  Azfi ,  A~fi, and A2zfi a r e ,  r e spec t ive ly ,  the f i r s t  and second cen t ra l  d i f ference  de r iva t ives  of the function 
fi with r e s p e c t  to r and z.  It should a lso  be noted that  in the d i f ference  equations for  fi al l  o ther  unknown 
functions fj, where  i ~j ,  a r e  t aken  f r o m  the p reced ing  l aye r .  This  p e r m i t s  the s y s t e m  of equations to be de-  
coupled and the d is t r ibut ions  o f  r ,  ~, r in the (n + 1)-th l a y e r t o  be de te rmined  success ive ly .  A dditional i n t eg ra -  
t ions  w e r e  c a r r i e d  out in the solut ion of the  d i f ference  equation for  r The Dir ichle t  boundary conditions 
w e r e  approx ima ted  explici t ly,  while the Neumann boundary  conditions w e r e  approx ima ted  according to 
[7] s t a r t ing  f rom the exp re s s ion  

778 



or o : r  h~ 
r [ i ,  t]  = r [!,o] § ~ -  ~,ohz § o~ ~,oW" 

The value of the second derivative is found direct ly  f rom the equation for  F extended to the boundary. A 40 • 
40 grid uniform over  z and nonuniform over  r was used for  the solution in the centra l  region. The ~'-variation 
of the computing step was specified in the following way: 

r [i] : h r [0] (i -t- a) ~ -- i or h r [i -~ 1] : (1 -]- a )  h r [i]. 

For  the computat ions d iscussed above ~ = 0.024. 

The author expresses  g ra t i tude  to M. A. Gol 'dshtik for  attention to the work. 
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S E C O N D A R Y  F L O W S  B E S I D E  A 

IN A C O M P L E X  S O U N D  F I E L D  

C Y L I N D E R  

V .  B.  R e p i n  UDC 534.222.2 

It is known that steady flows a r i se  beside a solid surface in the presence  of a sound field which 
can to a ce r ta in  extent exert  an effect on the p roces se s  of heat and mass  exchange [1-3] .  As a 
rule,  all papers  f rom this a rea  re fe r  to the case  in which one can represent  the sound f ie ldin  
the fo rm of a single wave. However, situations a re  often encountered in prac t ice  in which the 
sound field is complex; i.e., it consis ts  of severa l  vibrations whose amplitudes and frequencies  
a re  unlike in the general  case .  The secondary  flows which fo rm beside a c i r cu la r  cyl inder  
placed in a complex sotmdfield a re  investigated in this paper .  

Let n plane waves with the following p a r a m e t e r s  encounter  a c i r cu la r  cyl inder  of radius R: A n is the 
velocity amplitude of the acoustic shift in the n-th wave, ~n  is the frequency,  a n is the point of encounter  of 
the wave with the cyl inder ,  and ~n is the phase of the wave. Let us consider  the case  in which the radius of 
the cyl inder  is significantly less  than the wavelength; then the flow beside the cyl inder  can be t reated as in- 
compress ib le .  

The N a v i e r - S t o k e s  equation describing the motion of a viscous incompress ib le  liquid has the form 

0 0 (r v2r = �89 H2V4~, (1) 
W (V~p) - ~ ~ ,  -5) 
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